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a b s t r a c t

Regionalized variables with discrete distributions are commonly associated with counts of individuals

(precious stones in ore deposits, wild animals in ecosystems, trees in forests, etc.), that can be

represented by a spatial point process. In this paper, we propose to model the point distribution by a Cox

process, i.e., a Poisson point process with a random regionalized intensity. The model is parsimonious

and versatile, as it allows fitting the histogram of the count variable, its variogram and madogram.

Simulation conditional to data is performed by recourse to iterative algorithms based on the Gibbs

sampler. Computer programs are provided for parameter inference and for simulation, and an

application to a forestry dataset is presented.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Discrete-valued observations (counts) associated with spatial
point processes are encountered in various fields of applications,
e.g., evaluation of mineral deposits (counts of diamonds in
kimberlite pipes, or of gold grains in alluvial placer deposits),
forestry (counts of trees of a given species), ecology (sightings of
wild animals), epidemiology (disease mapping based on reported
infection cases), pest management (counts of infected plants),
environmental sciences (radioactivity counts).

Several approaches are available to model the distribution of
count variables and to predict the outcomes at unobserved locations.
One option is the application of kriging methods. Apart from
traditional linear kriging, which can be used for both continuous-
valued and discrete-valued variables, specific approaches have been
developed for dealing with count data, among which one can
mention transitive kriging (Rivoirard et al., 2000) and disjunctive
kriging (Matheron, 1984; Armstrong and Matheron, 1986; Emery,
2006).

Another option is the recourse to hierarchical models, in which
the count variable is driven by a latent (hidden) random field that
accounts for the spatial variations in the counts. The construction
ll rights reserved.
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is hierarchical as, once the latent random field is fixed, the counts
at different locations are assumed to be mutually independent.
These models have been widely used for developing variants of
kriging, such as binomial and Poisson kriging (McNeill, 1991;
Oliver et al., 1993; Monestiez et al., 2006), as well as generalized
linear predictors within a Bayesian framework (Diggle et al., 1998;
Hrafnkelsson and Cressie, 2003; Banerjee et al., 2003). Most often,
the latent random field is chosen as a monotonic transform of a
Gaussian random field, e.g., a lognormal random field; a few
references also propose the use of gamma random fields (Wolpert
and Ickstadt, 1998).

In this work, we will consider a specific model (the Cox point
process) for describing the spatial distribution of discrete-valued
observations or counts. The model is hierarchical and driven by a
random field (known as potential) that controls the variations of
the number of points in space. The goals of our contribution are
the following:
�
 To propose a methodology for inferring the model parameters
based on the fitting of the histogram and spatial continuity
measures of the count data.

�
 To present a parametric family of random fields for modeling

the potential, including Gaussian and gamma random fields as
particular cases.

�
 To present algorithms for conditional simulation, in order to

assess the uncertainty in the outcomes of the discrete-valued
(count) variable.

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2009.04.013
http://www.iamg.org/CGEditor/index.htm
mailto:xemery@ing.uchile.cl
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�
 To provide a set of computer programs and to illustrate them
on a case study.
The aforementioned kriging approaches (transitive, disjunc-
tive, binomial, Poisson kriging) are helpful for spatial prediction

and for quantifying the uncertainty in the outcome of the variable
at a location without observation. In comparison, conditional
simulation allows a deeper analysis, since it provides measures
of the joint uncertainty at multiple locations (Goovaerts, 2001).
For instance, in natural resources exploitation, simulation is
of great interest for quantifying the selectivity of the exploita-
tion and the amounts of recoverable resources, for optimizing
the sequence of extraction, and for assessing the technical and
financial risks associated with the quantity and quality of
extracted resources (e.g., Godoy and Dimitrakopoulos, 2004;
Dowd and Dare-Bryan, 2005; Leite and Dimitrakopoulos, 2007;
Nicholas et al., 2008).
2. The Cox process

2.1. Model description

Consider a Poisson point process in Rd with a regionalized
intensity y={y(x), xARd}. This process is characterized by the
following properties (Lantuéjoul, 2002):
(1)
 The number N(v) of points contained in a finite domain vCRd

is a Poisson random variable with parameter

yðvÞ ¼
Z

v
yðxÞdx ð1Þ

If {vi, i=1,y, m} is a set of pairwise disjoint domains of Rd,
(2)

then the random variables {N(vi), i=1,y, m} are mutually
independent.
Because of the last property, there is no stochastic dependence
between the numbers of points observed in non-overlapping
domains of space. Hence, the spatial structure of the point process
is entirely controlled by the (deterministic) regionalized intensity
function y, which must be explicitly modeled by the user.

In practice, the intensity of the point process is often uncertain in
areas without data, so that it is convenient and more parsimonious
to use a stochastic modeling of this intensity. This leads to the
so-called Cox process or doubly stochastic Poisson point process (Cox,
1955), in which the regionalized intensity is replaced by a random
field Y={Y(x), xARd} called potential. The spatial distribution of
points is characterized by the following probabilities:

Prob
\m

i ¼ 1

NðviÞ ¼ ni

( )
¼ E

Ym
i ¼ 1

exp �YðviÞ
� �YðviÞ

ni

ni!

( )
; ð2Þ

for all finite set of pairwise disjoint domains {vi, i=1,y,m} and non-
negative integers {ni, i=1,y,m}.

In general, there exists a stochastic dependence between the
numbers of points observed in non-overlapping domains, due
to the spatial dependence structure of the potential field Y.
This random field measures the propensity of any domain to
contain points of the process because of geographical, geological
or environmental factors.

The Cox process has been used in the geosciences for modeling
natural hazards (Jaquet and Carniel, 2001) and natural resources,
e.g., the distribution of trees in forests (Matérn, 1986; Stoyan and
Penttinen, 2000) or of precious stones in ore deposits (Kleingeld
and Lantuéjoul, 1993; Kleingeld et al., 1997).
2.2. Modeling the univariate distribution of the potential field

Assume that the numbers of points have been counted in a set
of non-overlapping domains {vi, i=1,y,m}, all with the same
support (shape and orientation) as a reference domain v.
According to Eq. (2), the univariate distribution of the counts is
given by

8nAN; PðnÞ ¼ Prob NðvÞ ¼ n
� �

¼ E exp �YðvÞ
� �YðvÞn

n!

� �
: ð3Þ

In practice, knowing the distribution of the counts, i.e., the
distribution of N(v), one wants to determine that of Y(v). A
flexible model is obtained by considering that N(v) follows a
generalized Sichel distribution:

8nAN; PðnÞ ¼
ðabÞ

a=2Kaþnð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ1Þb

p
Þ

n!ðaþ1
b Þ
ðaþnÞ=2Kað2

ffiffiffiffiffiffi
ab
p
Þ

ð4Þ

with a40, b40, aAR, and Ka the modified Bessel function of the
second kind of index a. In such a case, Y(v) follows a generalized
inverse Gaussian distribution with density (Jørgensen, 1982;
Lantuéjoul, 2002):

8yARþ ; f ðyÞ ¼
ðabÞ

a=2

2Kað2
ffiffiffiffiffiffi
ab
p
Þ
ya�1exp �ay�

b

y

� �
: ð5Þ

The motivation for choosing a generalized Sichel distribution is
the capability to model a very large family of univariate
distributions for the count data, in particular highly skewed
distributions such as stone number frequencies in diamondiferous
deposits (Sichel, 1973). Particular cases include:
�
 a=�1/2: this yields an inverse Gaussian distribution for Y(v)
and a standard Sichel distribution (Sichel, 1974) for N(v);

�
 b-0 and a40: this yields a gamma distribution for Y(v) and a

negative binomial distribution for N(v):

8nAN; PðnÞ ¼
GðaþnÞ

GðaÞn!
a

aþ1

� �a 1

aþ1

� �n

: ð6Þ

Other choices of univariate distributions are possible. For
instance, one can assume that the potential field has a lognormal
distribution, which yields a point process known as log-Gaussian
Cox process (Møller et al., 1998; Brix and Diggle, 2001). Never-
theless, because the lognormal distribution only depends on two
parameters, this is a less flexible choice than the generalized inverse
Gaussian distribution and will not be considered in this work.
2.3. Modeling the spatial structure of the potential field

There exists a simple relationship between the covariance
function of the potential field and that of the counts (Chil�es and
Delfiner, 1999; Lantuéjoul, 2002):

8hARd; covfYðvÞ; YðvhÞg ¼ covfNðvÞ;NðvhÞg � EfNðv \ vhÞg; ð7Þ

where vh represents domain v shifted by vector h. In particular, if
v and vh do not overlap, the last term in Eq. (7) vanishes, and the
covariance of the potential field is the same as that of the counts.
At h=0, one gets:

varfYðvÞg ¼ varfNðvÞg � EfNðvÞg: ð8Þ

This equation proves that N(v) cannot be Poisson distributed (its
variance is greater than its mean), unless the variance of Y(v) is zero.

The knowledge of the covariance function of the potential
random field still leaves a large indetermination on this field and
many models can be designed. In this work, we consider the case
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when the potential Y(v) is of the following form:

YðvÞ ¼fððdþYðvÞÞ2Þ ¼cðYðvÞÞ ð9Þ

with
�
 f a monotonic function (either increasing or decreasing)

�
 dAR+
�
 {Y(v), vARd} a stationary standard Gaussian random field with
correlation function r(h)

�
 8yAR; cðyÞ ¼fððdþyÞ2Þ.

The motivation for the model proposed in (9) is its simplicity,
insofar as it depends on few parameters, and its versatility. In
particular, one has the following extreme cases:
�
 d= +N: the potential is the transform of a standard Gaussian
random field (Kleingeld et al., 1997);

�
 d=0: the potential is the transform of a gamma random field

with shape parameter 0.5 (Møller and Waagepetersen, 2003).

In the general case, (d+Y(v))2 has a non-central chi square
distribution with one degree of freedom and shift parameter d.
The recourse to an underlying Gaussian random field Y(v) will also
facilitate the design of conditional simulation algorithms, as it will
be seen in Section 3.

2.4. Steps for parameter inference

The proposed model depends on the parameters (a,b,a) of the
count distribution, the shift parameter d, the correlation function
r(h), and on whether the transformation function f is increasing
or decreasing. Given a finite set of count data {N(vi), i=1,y,m}, the
inference of these parameters can be performed by trials and
errors, according to the following steps:
(1)
 Find the parameters (a,b,a) of the generalized Sichel distribu-
tion (Eq. (4)) that best fits the count data histogram. One can
use empirical approaches (visual comparison of the data
histogram and model distribution; fitting of the first-order
moments or of specific frequencies of the data histogram, e.g.,
P(0), P(1) and P(2)), maximum likelihood approaches (Stein
et al., 1987), or iterative algorithms in order to minimize a
given goodness-of-fit criterion (Press et al., 2007). According
to Eq. (5), the univariate distribution of the potential field will
be a generalized inverse Gaussian distribution with para-
meters (a,b,a).
(2)
 Choose a value for the shift parameter d and a behavior for the
transformation function f (increasing or decreasing).
(3)
 Construct a conversion table between the potential field and
its chi square transform:
(a) Simulate a large number of independent random variables

with generalized inverse Gaussian distribution.
(b) Simulate a large number of chi-square random variables

with 1 degree of freedom and shift parameter d.
(c) The conversion table, which models the transformation

function f, is obtained by constructing a quantile–
quantile plot between the sets of simulated values
obtained in the previous steps (a) and (b).
(4)
 Calculate the sample variogram of the available count data for
various lag vectors (or lag classes if distance and/or angle
tolerances are taken into account). Calculations can be done
by the method-of-moments approach or by recourse to robust
variogram estimators (Chil�es and Delfiner, 1999).
(5)
 Propose a model for the correlation function r of the Gaussian
random field Y(v).
(6)
 For each lag vector h used in the calculation of the sample
variogram (step 4):
(a) Simulate a large number of bi-Gaussian pairs {Y(v),Y(vh)}

with correlation r(h)
(b) Shift and square the simulated values, then back-trans-

form by using the conversion table obtained at step (3).
Obtain realizations of {Y(v),Y(vh)}.

(c) Simulate independent Poisson random variables with
parameters Y(v) and Y(vh). Obtain realizations of
{N(v),N(vh)} and calculate their variogram.
(7)
 If the variogram calculated at step (6) does not satisfactorily
fit the sample variogram obtained in (4), then go back to step
(5) and propose another correlation function r, or go back to
step (2) and change the shift parameter d or the assumed
behavior of f. The quality of the variogram fitting can be
assessed graphically or statistically, for instance by calculating
weighted sums of squared errors of the fitted models.
To better determine the spatial structure of the potential field,
the above procedure (steps (4)–(7)) can also be applied to
structural tools other than the variogram, in particular indicator
variograms associated with specific thresholds, or variograms of
different orders, e.g., the madogram or first-order variogram
(Emery, 2005).

Unlike with Bayesian approaches, here the model parameters
(a,b,a,d,r) will be assumed perfectly known in the conditional
simulation process.
3. Conditional simulation

We now address the problem of simulating the count variable
N(v) in a bounded domain of Rd, conditionally to a set of data
{N(vi)=ni, i=1,y,m}. To shorten notations, we will write, for any
subset JD I={1,y,m}, NJ, nJ, YJ and yJ instead of {N(vj), jAJ}, {nj,
jAJ}, {Y(vj), jAJ} and {yj, jAJ}. We also assume that the supports {vi,
i=1,y,m} are the same up to a translation and do not overlap.

Conditional simulation consists of the following steps:
(1)
 Simulate YI conditionally to the data NI=nI.

(2)
 Simulate the Gaussian random field Y(v) at the target locations

in Rd conditionally to the vector YI obtained at step (1). This
can be done by using any multivariate Gaussian simulation
algorithm (sequential Gaussian, Choleski decomposition of the
covariance matrix, continuous or discrete spectral method,
turning bands, etc.) (Chil�es and Delfiner, 1999).
(3)
 At each target location v, derive the potential Y(v) as per
Eq. (9) and simulate an independent Poisson random variable
N(v) with parameter Y(v).
Steps (2) and (3) are straightforward and the only difficulty
concerns step (1). According to Bayes’ theorem and Eqs. (2) and
(9), the conditional density probability function of YI is

gðyIjnIÞpgðyIÞ
Ym
i ¼ 1

exp �cðyiÞ
� �cðyiÞ

ni

ni!
ð10Þ

with g(yI) the prior standard multivariate Gaussian density of YI.
A random vector with the conditional distribution (10) can be
obtained by using the Gibbs sampler, an iterative algorithm
originally designed by Geman and Geman (1984). Given the
vector YI=yI in the current state of the sampler, one iteration
consists of the following steps:
(a)
 define a random permutation {i1,y,im} of I.

(b)
 set k=1.
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(c)
 set i= ik and denote J= I�{i}.

(d)
 simulate Yi conditional on YJ=yJ. Since Y(v) is a stationary

Gaussian random field, the conditional distribution of Yi is
Gaussian, with mean equal to the simple kriging prediction of
Yi from YJ and variance equal to the simple kriging variance
(Chil�es and Delfiner, 1999). Let yi

0 denote the new simulated
value of Yi.
(e)
 calculate the conditional probabilities associated with the
former and new states:

pi ¼ Prob NI ¼ nIjYi ¼ yi;YJ ¼ yJ

� �
¼ exp �cðyiÞ

� �cðyiÞ
ni

ni!

Y
jA J

exp �cðyjÞ
� �cðyjÞ

nj

nj!
ð11Þ

pi
0 ¼ Prob NI ¼ nIjYi ¼ yi

0 ;YJ ¼ yJ

� �
¼ exp �cðyi

0 Þ
� �cðyi

0 Þ
ni

ni!

Y
jA J

exp �cðyjÞ
� �cðyjÞ

nj

nj!
ð12Þ

simulate a uniform random variable U on [0,1].
(f)

(g)
 if piUopi

0 , substitute yi
0 for yi, in accordance with Metropolis

acceptance criterion (Metropolis et al., 1953). According to
Eqs. (11) and (12), the substitution takes place if:

Uexpf�cðyiÞgcðyiÞ
ni oexpf�cðyi

0 Þgcðyi
0 Þ

ni : ð13Þ

set k=k+1.
(h)

(i)
 if krm, go back to step (c).
The iterative algorithm (steps (a)–(i)) must be run until a
maximum number of iterations has been reached, ensuring the
convergence of the simulated vector YI to a vector following the
conditional distribution (10). The whole procedure must then
be repeated as many times as necessary (using different seeds
for random number generation) to obtain the required number of
realizations of YI.

To initialize the Gibbs sampler, it is convenient to simulate
each component Yi according to its distribution conditional on
Ni=ni only. According to Bayes’ theorem and Eqs. (3) and (9), the
density of this conditional distribution is

gðyijniÞ ¼ CgðyiÞexp �cðyiÞ
� �cðyiÞ

ni

ni!
; ð14Þ

where C is a normalization constant, while g(yi) is the prior
standard Gaussian density of Yi. The conditional density (14) is
bounded by

gðyijniÞrCgðyiÞ exp �nif g
nni

i

ni!
ð15Þ

This inequality allows simulating Yi|Ni=ni by rejection sam-
pling (Von Neumann, 1951; Freulon, 1994):
(i)
 Simulate Yi as a standard Gaussian random variable.

(ii)
 Simulate a uniform random variable U on [0,1].
(iii)
 If Uexpf�nign
ni

i rexpf�cðYiÞgcðYiÞ
ni , deliver Yi. Otherwise, go

back to step (i).
Rejection sampling can also be used in the iterative steps of the
Gibbs sampler, which leads to the following acceptance criterion
at step (g) (corrected from Kleingeld et al., 1997):

Uexpf�nign
ni

i oexpf�cðyi
0 Þgcðyi

0 Þ
ni : ð16Þ

However, criterion (16) turns out to be more restrictive than
the Metropolis criterion (13) (the chance of accepting the new
simulated value yi0 is lower), which implies a slower convergence
(hence, the need for a larger number of iterations) if it were used
in the Gibbs sampler.

To illustrate the proposed algorithm, a non-conditional
realization is generated on a 400� 400 grid (Fig. 1A), with the
following parameters:

a¼ b¼ 0:5

a¼ � 0:5

d¼ 0

fincreasing

8hAR2;rðhÞ ¼ isotropic cubic model with range 80

8>>>>>><
>>>>>>:

ð17Þ

One hundred locations are selected at random (uniformly)
among the 160,000 grid nodes (Fig. 1B). The values simulated at
these locations are then used as conditioning data for two new
realizations (Fig. 1C and D). In each case, the Gibbs sampler uses
one hundred iterations and the Gaussian random field Y(v) is
simulated by the turning bands algorithm with one thousand
regularly distributed lines. One simulation takes about 5 min of
CPU time on a Pentium 2.0 GHz, consisting of 3.9 min for the Gibbs
sampler and 1.1 min for the turning bands simulation over the
160,000 grid nodes.

The proposed algorithm can become time-consuming if the
conditioning dataset is very large (say, over a few thousand
data), insofar as it requires solving a kriging system in the Gibbs
sampler (step 1(d)) and in the conditional simulation of Y(v)
(step 2). To speed up the algorithm, one can perform kriging in a
moving neighborhood; the search for nearest neighbors can be
made fast by using a super-block strategy or multidimensional
tree structures (Friedman et al., 1975; Deutsch and Journel,
1992).
4. Program description

4.1. Inference program

The algorithm for parameter inference proposed in Section 2.4 is
implemented in a Matlab program called COXINFER that can be used
in workspaces of up to three dimensions. The input arguments are
the parameters (a,b,a) of the univariate count distribution (Eq. (4)),
the shift parameter d (set to a positive value if the transformation
function f is assumed to be increasing, and to a negative value
otherwise), the variogram model of the underlying Gaussian
random field Y(v) (the sum of a nugget effect and one or more
nested structures), and the parameters for variogram calculation
(lag, number of lags, azimuth and dip). The outputs are the values
of the variogram and madogram of the count variable N(v) for the
specified direction and lag distances, and a conversion table
between the potential random field and its chi square transform
(Eq. (9)).

The reader is referred to the header of the program file for
details on the input and output parameters. Alternatively,
program COXINFER can be used with an external parameter file
(by default, COXINFER.PAR), in which case there is no need to
enter the parameters in the Matlab workspace (Table 1).

The simulation of generalized inverse Gaussian random
variables (step 3(a) of Section 2.4) is done by subroutine GIGRND,
which uses an acceptance and rejection method proposed by
Devroye (1986), except in the following cases:
(1)
 b=0 and aZ1: the Matlab subroutine GAMRND is used;

(2)
 b=0 and 0oao1: an acceptance–rejection method (Ahrens

and Dieter, 1974) is used to simulate gamma random variables
with shape parameter less than 1 (subroutine GAMRND2);
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(3)
 a=�1/2: random variables with an inverse Gaussian distribu-
tion are simulated via the following algorithm (Michael et al.,
1976; Matheron, 1985): ffiffiffiffiffiffip

�
 Simulate a standard Gaussian variable X and set S¼ 2X2= abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

�
 Calculate Z ¼ 1

2ðSþ2� S2þ4SÞffiffiffiffiffiffiffiffip

�
 The simulated variable is Z b=a with probability 1/(1+z) or
ð1=ZÞ

ffiffiffiffiffiffiffiffi
b=a

p
with probability z/(1+z).
4.2. Conditional simulation program

The conditional simulation algorithm presented in Section 3
has been implemented in a program called COXSIMU. The second
step of the algorithm (conditional simulation of the Gaussian
random field Y(v)) uses the turning bands algorithm and relies on
a former program by Emery and Lantuéjoul (2006) that offers the
following functionalities:
(1)
 Versatility: There is no restriction on the number of nested
structures contained in the correlation model for Y(v) (the
most commonly used basic models are available), nor on the
spatial configuration and on the number of locations targeted
for simulation. In particular, the program can easily handle
several millions of locations that may not be regularly spaced,
a feature that cannot be addressed by simulation methods
such as the LU decomposition of the covariance matrix,
discrete Fourier and circulant-embedding algorithms. Simula-
tion is restricted to three-dimensional workspaces, or to sub-
spaces by setting one or two of the coordinates to a constant
value.
(2)
 Efficiency: The turning bands algorithm is very fast because
it simplifies the simulation of Y(v) to that of a series of
one-dimensional random fields. Moreover, at each target
location, all the realizations of Y(v) are conditioned by
solving a single kriging system. Kriging can be performed in
a moving neighborhood defined by an ellipsoid divisible into
octants, or in a unique neighborhood (provided that the
conditioning dataset is not too large, say, less than a few
thousands data). With the use of a moving neighborhood,
a super-block search is implemented and there is practically
no limit to the number of conditioning data, other than
memory capacity.
(3)
 Accuracy: The 1D random fields are simulated continuously
(no discretization) along the lines, which allows reproducing
the correlation model of Y(v) without bias, even if the
simulation is performed at unevenly spaced locations.
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Table 1
Default parameter file for program COXINFER.

Parameters for COXINFER

START OF PARAMETERS:

0.5 0.5 �0.5 % parameters (a,b,alpha) of distribution modeling the

count data

0.8 % shift parameter (delta) for chi square random field

2 0.15 % number of nested structures, nugget effect

1 0.45 170 120 100 30 0

0 1

% 1st structure: it cc a1 a2 a3 ang1 ang2 ang3

bb

2 0.40 100 100 50 0 0 0

1

% 2nd structure: it cc a1 a2 a3 ang1 ang2 ang3

bb

30 0 % azimuth, dip for variogram calculations

20.0 % lag distance

10 % number of lags

countvariogram.out % name of output file with variogram/madogram

table.trn % name of output file with transformation table

Available covariance model types:

1: spherical

2: exponential

3: Gamma (parameter bb40)

4: stable (parameter bbo2)

5: Cubic

6: Gaussian

7: cardinal sine

8: J-Bessel (parameter bb 4 0.5)

9: K-Bessel (parameter bb 4 0)

10: generalized Cauchy (parameter bb 4 0)

11: exponential sine

Table 2
Default parameter file for program COXSIMU.

Parameters for COXSIMU

START OF PARAMETERS:

0 % type of simulation: 0=gridded locations;

1=scattered locations

locations.prn % if =1: file with coordinates of locations for

simulation

1 2 3 % columns for location coordinates

0.0 0.0 0.0 % if =0: x0, y0, z0

100 100 10 % nx, ny, nz

1.0 1.0 10.0 % dx, dy, dz

1 1 1 % block discretization (1 1 1 for point-support

simulation)

counts.dat % file with conditioning data

1 2 3 % columns for coordinates

4 % column for count data

�1 100 % trimming limits for count data

0.5 0.5 �0.5 % parameters (a,b,alpha) of distribution modeling

the count data

0.8 % shift parameter (delta) for chi square random

field

table.trn % file with conversion table (raw-chi square) for the

potential field

2 0.15 % number of nested structures, nugget effect

1 0.45 170 120 100 30 0 0

1 1000

% 1st structure: it cc a1 a2 a3 ang1 ang2 ang3

bb nlines

2 0.40 100 100 50 0 0 0 1

1000

% 2nd structure: it cc a1 a2 a3 ang1 ang2

ang3 bb nlines

30 % number of realizations

9784498 % seed for random number generation

500 % maximum number of locations to simulate

simultaneously

100 % maximum number of iterations for the Gibbs

sampler
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The input parameters (see header of the program file for
details) consist of:
200 200 100 % maximum search radii in the rotated system

30 0 0 % angles for search ellipsoid
�

1 % divide ellipsoid into octants? 1=yes, 0=no

4 % optimal number of data per octant (if octant=1)
information on the locations targeted for simulation: coordi-
nates, block discretization if a change of support (regularization)
has to be considered;
or in total (if 0)

�

coxsimu.out % name of output file

1 % create a header in output file? 1=yes, 0=no

Available covariance model types:
information on the conditioning data: coordinates, count
values, trimming limits, parameters (a,b,a) of the univariate
distribution model;
1: Spherical
�
2: Exponential
spatial structure of the potential field: shift parameter d,
conversion table, correlation model for Y(v);
3: gamma (parameter bb 4 0)
�

4: stable (parameter bbo2)

5: Cubic

6: Gaussian

7: cardinal sine
simulation parameters: numbers of lines to use for turning
bands simulation, number of realizations to generate, seed for
random number generation, number of iterations to use for the
Gibbs sampler;
8: J-Bessel (parameter bb 4 0.5)
�

9: K-Bessel (parameter bb 4 0)
information on kriging neighborhood: radii, angles, octant
division and number of data per octant;
10: generalized Cauchy (parameter bb 4 0)
�

11: exponential sine
information on the output: name of output file, presence of a
header in this file.

The output of program COXSIMU is an external ASCII file with
the simulated values of the count variable (one column per
realization). For simulations at regular grid nodes, the nodes are
ordered point by point to the east, then row by row to the north,
and finally level by level upward.

As for the inference program, COXSIMU can also be used with
an external parameter file (by default, COXSIMU.PAR), without the
need to specify the input arguments in the Matlab workspace
(Table 2). In such a case, the conditioning data and the conversion
table must be stored in ASCII files without header.
5. A case study in forest resources evaluation

In this section, the proposed model and programs are applied to a
forestry case study. The dataset consists of 108 measurements from
a ground survey in a forest domain located in southern Chile (Arauco
Province) and owned by Bosques Arauco S.A. Each measurement
corresponds to a rectangular plot of about 500 m2 and indicates the
number of radiata pines (coniferous trees) observed in this plot.
Additional variables not considered in this work are the mean tree
height and tree basal area. The data are located on a quasi-regular
grid with a mesh of about 150 m, and the histogram of counts is
slightly skewed with most of the values between 15 and 50 (Fig. 2).

To assess the wood resources that can be recovered, it is of interest
to predict the number of trees, both globally over the entire domain
and locally, and to measure the uncertainty in this number. To fulfill
these goals, the spatial distribution of trees will be modeled by a Cox
process, as described in Section 2. Even if this model may be ill-suited
to represent the processes generated by local competition between
trees at a short scale, this should no longer be the case at larger scales
(plot scale and stand scale), where the tree distribution is the
expression of aggregation processes under micro-site conditions.

The histogram of tree counts (Fig. 2) has a variance greater
than the mean, which complies with the requirement for using a
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Fig. 2. Location map and histogram of count data (forestry dataset).

Fig. 3. Sample (circles and dashed lines) and modeled (solid lines) variograms and madograms of count data along main anisotropy directions.

X. Emery, J. Hernández / Computers & Geosciences 36 (2010) 24–3330
Cox point process (Eq. (8)). In the following, it will be modeled by
a negative binomial distribution. The mean and variance of this
distribution can be determined by that of the count histogram, or
by examining the variogram of the count data (Fig. 3):
�
 the mean should be no more than the nugget effect, i.e.,
approximately 25 (Eq. (7))

�
 the variance should coincide with the variogram sill, i.e.,

approximately 120.
Based on these statements, the parameters of the negative
binomial distribution (Eq. (6)) are found to be a=0.263 and a=6.58.

The remaining parameters of the model (correlation function
r(h), shift parameter d and conversion table between count data
and chi square random field) are determined by trials and errors,
by recourse to program COXINFER. We attempted to find the best
fitting of the sample variogram and sample madogram of the
count data, calculated along the main directions of anisotropy
(N401W and N501E) (Fig. 3). To the authors’ opinion, fitting both
the variogram and madogram is desirable in order to provide an
adequate modeling of the bivariate (and, hopefully, multivariate)
distributions of the count variable, which might not be the case
when fitting the sole variogram (Chil�es and Delfiner, 1999; Emery,
2005). The following parameters are finally chosen:
�
 d=5;

�
 f=increasing function;

�
 r(h)=spherical model with range 1200 m (N401W) and 650 m

(N501E).
Note that the model parameters have been determined only on
the basis of the univariate and bivariate distributions of the count
data, and higher-order distributions (multiple-point statistics)
have not been examined. Therefore, as long as the sample
histogram, variogram and madogram are deemed reliable, there
is no real danger of over-fitting, i.e., the selected parameters are
expected not to exceed the content of information contained in
the data.

To put the fitted model to the test, leave-one-out cross-
validation is performed. At each data location, the number of trees
is simulated one thousand times conditionally to the remaining
data, and a prediction is obtained by averaging the simulated
values. Table 3 shows that the prediction errors have an average
close to zero and that the regression of the true upon the
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predicted numbers of trees has a slope close to one, which
indicates that predictions do not suffer from global or conditional
bias. From the set of simulated values, it is also possible to
construct probability intervals and to verify that the proportions
of data belonging to the intervals match the interval probabilities,
e.g., by checking that the goodness statistics (Goovaerts, 2001) is
close to one (Table 3).

Having determined and validated the model parameters, we
can now simulate the numbers of trees over the study domain by
using program COXSIMU. The domain is covered by a regular grid
containing 5662 cells with size 22.4�22.4 m2, so that each cell
corresponds to the same areal support as the data (i.e., 500 m2).
Program COXSIMU is run by using 100 iterations for the Gibbs
sampler, 1000 lines for the turning bands simulation, and a unique
neighborhood for the conditioning data selection. The CPU time
for constructing 1000 realizations is 4.8 h (i.e., an average of 17 s
per realization) on a Pentium 2.0 GHz. As an illustration, Fig. 4
displays the maps of two realizations and of the average of 1000
realizations, while Table 4 gives statistics of the simulated
numbers of trees over the entire domain.

The average of the realizations is almost the same as the
ordinary kriging predictions: the correlation coefficient between
kriging and the average of realizations is equal to 0.997 for
traditional kriging and to 0.999 for Poisson kriging. Also, traditional
and Poisson kriging yield estimated totals of 176,230 and 176,095
trees, respectively, which are very close to the expected number
(175,545) found via conditional simulation. However, in contrast to
Table 3
Cross-validation statistics on 108 data, in order to check for accuracy of predictions

and of local uncertainty measures.

Statistics Actual value Ideal value

Mean error 0.089 0

Mean absolute error 5.143 Smallest possible

Mean squared error 48.37 Smallest possible

Regression slope 0.956 1

Goodness statistics 0.927 1

Fig. 4. Two realizations and average of 1

Table 4
Statistics on simulated numbers of trees within entire domain (5662 nodes, correspon

Minimum Maximum

Total number of trees 163,347 185,592
the kriging approaches, simulation aims at reproducing the spatial
variability and allows determining probability intervals on the
number of trees (either globally or locally) and quantifying the risk
of not meeting planned production targets.

For instance, let us assume that the area will be harvested by
skidding at a rhythm of 7.45 ha per day, according to the sequence
indicated in Fig. 5A. The entire area (283.1 ha) will be harvested in
38 days, with an average recovery of 4620 trees per day. To
schedule the wood production, it is of interest to evaluate the
number of days for which the harvest is significantly less than
the average, say, less than 4000 trees per day. The daily harvest
can be calculated on each conditional realization, yielding a set of
1000 recovery curves (Fig. 5B). It is found that the number of days
with a harvest smaller than 4000 trees is comprised between 0
(best case) and 15 (worst case), with an average of 9.7. These
results cannot be obtained with kriging approaches, insofar as
they depend on the multivariate distributions of the numbers of
trees in space; they may be used by the landowner to modify the
harvest sequence or to schedule the harvesting of other sites, in
order to reduce the variability in the daily stream sent to the pulp
or saw mills.
6. Conclusions

One motivation of this work was to present a stochastic model
for representing discrete-valued regionalized variables associated
with count observations. The proposed Cox process turns out to be
versatile and parsimonious, as it depends upon few parameters
that allow fitting the main characteristics of the discrete-valued
variable: univariate distribution (histogram) and spatial continu-
ity (variogram, madogram, or other continuity measures).

Because the process is driven by a potential obtained by
transforming a Gaussian random field, conditional simulation is
easily performed by recourse to iterative algorithms. Of course,
many other random field models could be designed for represent-
ing the potential, in particular models based on operations and/or
combinations of Gaussian random fields, for which the Gibbs
sampler is well-suited (Emery, 2007, 2008).
000 realizations of number of trees.

ding to a surface of 283.1 ha).

Mean Quantile 5% Quantile 95%

175,545 169,528 181,405
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Fig. 5. (A) Harvesting sequence and (B) recovery curves (number of harvested trees per day) for 1000 realizations.
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The proposed approach can also be enriched by including
covariates spatially correlated with the potential field. For
instance, in the presented forestry case study, one could think
of physiographic variables such as terrain elevation, slope and
profile curvature to explain the spatial variations of the number
of trees. Adaptations of the simulation algorithm to the multi-
variate framework are straightforward (the mean and variance of
the conditional distributions of Y(v) needed in the Gibbs sampler
stage are obtained by using co-kriging instead of kriging).

A difficulty of the algorithm (not tackled in this work) is that all
the samples must have congruent supports and the total domain
must be divisible into the sample support. If these requirements
are not fulfilled, compensation techniques must be introduced to
reshape and resize the sample supports to proper dimensions
(Ferreira and Lantuéjoul, 2007).
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sélectivité (Study of the selectivity index properties in the case of different
statistical distributions). Sciences de la Terre 24, 1–21.

McNeill, L., 1991. Interpolation and smoothing of binomial data for the
Southern African Bird Atlas Project. South African Statistical Journal 25 (2),
129–136.

Metropolis, N., Rosenbluth, A.W., Teller, A.H., Teller, E., 1953. Equation of state
calculation by fast computing machines. Journal of Chemical Physics 21 (6),
1087–1092.

Michael, J.R., Schucany, W.R., Haas, R.W., 1976. Generating random variates
using transformations with multiple roots. The American Statistician 30 (2),
88–90.

Møller, J., Syversveen, A.R., Waagepetersen, R.P., 1998. Log-Gaussian Cox processes.
Scandinavian Journal of Statistics 25 (3), 451–482.

Møller, J., Waagepetersen, R.P., 2003. Statistical Inference and Simulation for
Spatial Point Processes. Chapman and Hall/CRC, Boca Raton 300 pp.
Monestiez, P., Dubroca, L., Bonnin, E., Durbec, J.P., Guinet, C., 2006. Geostatistical
modelling of spatial distribution of Balaenoptera physalus in the Northwestern
Mediterranean Sea from sparse count data and heterogeneous observation
efforts. Ecological Modelling 193 (3–4), 615–628.

Nicholas, G., Coward, S., Ferreira, J., 2008. Financial risk assessment using
conditional simulations in an integrated evaluation model. In: Ortiz, J.M.,
Emery, X. (Eds.), Proceedings of the Eighth International Geostatistics Congress
Geostats 2008. Quebecor World Chile, Santiago, pp. 759–768.

Oliver, M.A., Lajaunie, C., Webster, R., Muir, K.R., Mann, J.R., 1993. Estimating the
risk of childhood cancer. In: Soares, A. (Ed.), Geostatistics Tróia’ 92. Kluwer
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